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Running title: Apportioning bacterial carbon source utilization in soil 

Originality-significance statement:  We present a novel combination of methodology (
14

C-

FISH-FACS) to address an unresolved need in microbial ecology: the ability to quantify in situ 

microbial substrate carbon use at the population level within a whole system carbon mass 

balance.  Using 
14

C-FISH-FACS, we demonstrate assimilation of salicylic acid by targeted 

Pseudomonas spp. and Burkholderia spp. populations.  In conjunction with analysis of the 
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taxonomic distribution of the salicylic acid biodegradation trait, we evidence that the ability of 

the targeted populations to capture a large proportion (~50%) of the added C was not due to 

conservation of this trait within the targeted group but instead due to competitiveness of this 

population for the added carbon.  The sensitivity of 
14

C-FISH-FACS and its compatibility with 

obtaining a full-system mass balance allows a quantitative dissection of C flow within the 

microbial biomass black box that has hitherto not been achieved to the same detail.  
14

C-FISH-

FACS will enable advances in understanding of population-specific C competitiveness, C use 

traits and their role in controlling overall C dynamics and microbial community composition in 

soil and rhizosphere.     
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Summary 

An unresolved need in microbial ecology is methodology to enable quantitative analysis of in 

situ microbial substrate carbon use at the population level.  Here, we evaluated if a novel 

combination of radiocarbon- labelled substrate tracing, Fluorescence in situ Hybridisation 

(FISH) and Fluorescence-Activated Cell Sorting (FACS) to sort the FISH-targeted population for 

quantification of incorporated radioactivity (
14

C-FISH-FACS) can address this need.  Our test 

scenario used FISH probe PSE1284 targeting Pseudomonas spp. (and some Burkholderia spp.) 

and salicylic acid added to rhizosphere soil.  We examined salicylic acid-
14

C fate (mineralized, 

cell-incorporated, extractable and non-extractable) and mass balance (0-24 h) and show that the 

PSE1284 population captured ~50% of the Nycodenz extracted biomass 
14

C.  Analysis of the 

taxonomic distribution of the salicylic acid biodegradation trait suggested that PSE1284 

population success was not due to conservation of this trait but due to competitiveness for the 

added carbon.  Adding 50KBq of 
14

C sample
-1

 enabled detection of 
14

C in the sorted population 

at ~60-600 times background; a sensitivity which demonstrates potential extension to analysis of 

rarer/ less active populations.  Given its sensitivity and compatibility with obtaining a C mass 

balance, 
14

C-FISH-FACS allows quantitative dissection of C flow within the microbial biomass 

that has hitherto not been achieved. 

 

Introduction 

Soil microorganisms play a critical role in driving the cycling of soil organic carbon (Nielsen et 

al., 2011; Gougoulias et al., 2014; Wieder et al., 2015) and in recognition of this importance 

there has been considerable discussion about the representation of microbial-scale processes and 
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the composition of the microbial biomass in carbon cycle models (McGuire and Treseder, 2010; 

Trivedi et al., 2013; Wieder et al., 2015).   Such representation of microbial communities 

requires knowledge of the relationship between microbial community composition and the rate 

of carbon cycling processes (Trivedi et al., 2013).  In a synthesis of findings from studies that 

have investigated the relationship between soil biodiversity and ecosystem functions related to C 

cycling, Nielsen et al. (2011) have concluded that whilst the overall richness of soil communities 

may have minimal effects on soil C cycling, changes in community composition that result in a 

changed abundance and activity of particularly influential species may be much more important.  

Therefore, it might be species traits rather than species richness per se that primarily control C 

cycling processes (Nielsen et al., 2011).  For example, the efficiency with which microorganisms 

convert available C to biosynthesized products versus respired CO2 (i.e. carbon use efficiency) is 

a trait with the potential to vary at the microbial population level (Geyer et al., 2016) that 

ultimately influences the proportion of substrate C that is incorporated in to stable soil organic 

matter (Miltner et al., 2012; Geyer et al., 2016).  However, how the use efficiency of carbon and 

its destination with in the metabolome (i.e. biomass versus exudate production) at the microbial 

population level scales to influence community and ecosystem level C cycling is underexplored, 

partly due to technical difficulties in empirically examining the quantitative role of individual 

microbial species in processing C in situ (Geyer et al., 2016). 

 

The population specific microbial use of C in the rhizosphere has particular significance for 

global biogeochemical cycles given the magnitude of the rhizodeposition C flux, its role in 

priming the decomposition of existing soil organic matter and in driving heterotrophic pathways 

responsible for the cycling and dissimilation of other elements.  We know that through 
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rhizodeposition, plants shape their microbiome with dynamic C availabilities selecting for fast-

growing, competitive genotypes (Lundberg et al., 2012; Peiffer et al., 2013; Chen et al., 2016).  

This selection has functional consequences additional to those related to nutrient cycling in terms 

of the recruitment of microorganisms that are beneficial or deleterious to plant health (Berendsen 

et al., 2012).  Whilst there have been many studies that have examined the impact of plant 

genotype or plant growth stage on the rhizosphere microbiome, we know less about the 

competitiveness of specific microbial populations for components of rhizosphere C flow.  Such 

understanding might be indispensable for engineering the rhizosphere for benefit but, again, is 

partly hampered by technical difficulties in empirically examining the quantitative role of 

individual microbial species in processing C in situ. 

 

A central goal in microbial ecology has long been to link carbon use to specific microbial taxa in 

the environment and a suite of methods involving the tracing of 
13

C- or 
14

C -labelled substrates 

(reviewed by Gutierrez-Zamora and Manefield, 2010; Musat et al., 2012; Wang et al., 2016) 

have been developed in order achieve this goal without the need for cultivation and 

characterization of isolates. These methods have been classified into two groups (Gutierrez-

Zamora and Manefield, 2010): (i) isotope probing methods (e.g. DNA-, RNA-, PLFA- and 

protein-stable isotope probing (SIP)) which allow the identification of functional members of a 

community without prior knowledge of their identity; and, (ii) probe-based methods with either 

in situ (e.g. microautoradiography–fluorescence in situ hybridisation (MAR-FISH), FISH-Raman 

microspectroscopy, Nano secondary ion mass spectrometry in situ hybridization (NanoSIMS-

ISH)) or ex situ (e.g. CHIP-SIP) hybridisation which require prior knowledge of the identity of 

the population of focus.  The development of these methods has revolutionised microbial 
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ecology over the last two decades, however, the methods vary in the extent to which they can 

quantitatively apportion the utilisation of C to specific microbial populations in situ.  With 

nucleic acid- based isotope probing methods, it is not generally possible to determine the extent 

of isotopic incorporation per phylogenetic group due to reliance on PCR for analysis of microbial 

identity which dilutes the isotopic content of the initial DNA or RNA (Gutierrez-Zamora and 

Manefield, 2010).    In contrast, quantification of isotopic incorporation is possible with Protein-

SIP and PLFA-SIP (Gutierrez-Zamora and Manefield, 2010; Lunsmann et al., 2016).  Probe-

based methods also generally allow, with appropriate calibration, the microbial incorporation of 

C from C isotope-labelled substrates to be quantified.  In “Chip-SIP” isotope array analysis, ex 

situ hybridisation to a high-density microarray is used to phylogenetically sort extracted rRNA 

into individual rRNAs, and then their isotopic enrichment is quantified with NanoSIMS (Mayali 

et al., 2012).  In in situ methods, isotope incorporation at the single cell level can be quantified 

by MAR, NanoSIMS or Raman microspectroscopy giving indispensable insight in to microbial 

processes at the scale approaching that at which they occur (Gutierrez-Zamora and Manefield, 

2010; Eichorst et al., 2015).   

 

The above quantitative identity-function methods add a great deal to the methodological tool box 

in microbial ecology, however, they also have certain limitations.  Compared to nucleic-acid 

based methods, protein-SIP and PLFA-SIP are limited in phylogenetic resolution;  labelled 

peptides or labelled PLFAs can often only be assigned to bacterial families or orders (Jehmlich et 

al., 2016) or are biomarkers for broad groups of microorganisms (Gutierrez-Zamora and 

Manefield, 2010), respectively.  For probe-based methods, even including Chip-SIP where 

multiple probes are deployed in parallel, a concern is that taxa coverage is dependent on 
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selection of probes and therefore analysis might miss activity in unexpected taxa (Mayali et al., 

2012). In addition, the application of  NanoSIMS to soil samples is not straightforward due to the 

large background of soil particles and sensitivity of the technique to sample topographical 

unevenness and label dilution due to redeposition of sputtered material (Eichorst et al., 2015).  

Similarly, Raman microspectroscopy also requires cells that are dispersed from soil constituents 

to retrieve reliable cell spectra (Eichorst et al., 2015).  NanoSIMS-ISH, FISH-Raman, Protein-, 

PLFA- and Chip-SIP also rely on access to costly and specialised analytical instrumentation 

(LC-MS/MS; GC-c-IRMS; NanoSIMS; Fluorescence-equipped Raman Microscope; Array 

Synthesis) meaning that access might be an issue for many researchers.    

 

When the interest is quantifying flows of total substrate carbon, however, a large constraint is 

that methods which quantify C incorporation into specific classes of biomolecules (protein-, 

PLFA- and Chip-SIP) do not provide a whole-cell view of C incorporation by a microbial group 

of interest.   Extrapolation of C incorporation from the biomolecule to the whole cell level that is 

prerequisite to apportioning C use to a population within the context of a system mass balance is 

problematic because, at the cell level, microorganisms will not allocate substrate derived carbon 

equally within their metabolome and for biomolecule synthesis.  Out of the methods reviewed, 

only the in situ methods detecting C isotopic incorporation at the whole cell level (by MAR, 

NanoSIMS) negate the need to extrapolate from biomolecules to whole cells if trying to 

understand and quantify the flows of total substrate carbon.   However, these methods are limited 

in the number of cells per sample that can be analysed (Clode et al., 2009; Wang et al., 2016).  

Consequently, it might also be difficult to quantify C apportionment to a given population within 
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the total C mass balance of added substrate due to the challenges of scaling-up results obtained 

from a few cells. 

 

Therefore, as a response to some of these issues, here we develop a 
14

C labelling and probe-

based approach in which FISH-hybridised whole cells are isolated by fluorescence activated cell 

sorting (FACS) prior to quantification of 
14

C incorporation (
14

C-FISH-FACS).  This approach 

has methodological steps in common with the established technique of MAR-FISH but employs 

FACS and scintillation counting instead of MAR for high throughput quantification of 
14

C 

incorporation by hybridised cells.     In previous work (Gougoulias and Shaw, 2012), we have 

evaluated the ability of a Nycodenz -based density gradient centrifugation protocol to obtain 

representative cell extracts suitable for FACS from soil and also validated the environmental 

specificity of FISH probe PSE1284 primarily targeting Pseudomonas spp. (but also some 

Burkholderia spp.) through 16S rDNA sequencing of FACS-sorted hybridized populations.   

Accordingly, in this research, we utilised probe PSE1284 and, as a test scenario for the 
14

C-

FISH-FACS method, chose salicylic acid as the applied carbon source.  Salicylic acid is a plant 

hormone and has been identified as a major root exudate in several plant species (Schmidt et al., 

2000; Hao et al., 2010; Khorassani et al., 2011).  Members of the Pseudomonas genera, the main 

group targeted here, are known degraders of salicylic acid and also important players in the 

rhizosphere in consequence of their roles in promotion of plant health and nutrition (Santoyo et 

al., 2012).   
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Results and discussion 

Fate of 
14

C salicylic acid 

After an initial short (~4 h) lag phase, salicylic acid underwent rapid mineralization with logistic 

kinetics that plateaued within 48 hours with a final asymptotic mineralization of ~80% of the 

14
C-carbon applied (Fig. 1a).  Within the first 24 h, the increase in the mineralized fraction was 

accompanied by a decrease in the extractable 
14

C from ~70% (at time 0 h) to ~5% of the applied 

radioactivity (at time 24 h) and a concomitant increase in non-extractable 
14

C associated with the 

solid phase (post extraction solids (PES); from 33 to ~50%) and extractable biomass (from <0.1 

to ~1.6%) 
14

C (Fig. 1b).  The rapid dissipation of aqueous-extractable salicylic acid after addition 

to soil is in agreement with Celis et al. (2005) who, for soil slurry incubations receiving 2.76 or 

276 µg g
-1

 salicylic acid, reported a reduction of solution-phase salicylic acid concentration to 

below detection limits or 40% of that applied initially, respectively, over a 24 hour period.  The 

14
C not initially extractable was mostly accounted for in the PES which might be due to rapid 

sorption of salicylic acid to the soil solid phase, potentially via ligand exchange and formation of 

bidentate complexes with positively charged metal oxide surfaces (Dubus et al., 2001; Celis et 

al., 2005; Jagadamma et al., 2012).  However, at subsequent time points, the microbial use of 

salicylic acid C for anabolic (in addition to simultaneous catabolic, i.e. mineralization) processes 

explains the loss of 
14

C from the aqueous phase and might explain the additional incorporation of 

14
C in to the PES through production of non-extractable microbial products and biomass (Nowak 

et al., 2011).  The microbial metabolism of salicylic acid via catechol or gentisic acid to TCA 

cycle intermediates has been well studied (Karegoudar and Kim, 2000) and the short lag phase 

prior to rapid mineralization presumably reflects the time required for the induction of salicylic 

acid catabolic enzymes (Schell, 1985).  The final asymptotic amount of 
14

C mineralized of ~80% 
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is in agreement with studies that have characterized the mineralization of low concentrations (1 

and 1000 ng ml
-1

) of related aromatic acids (benzoic and phenylacetic) in soil slurries (Amador 

and Alexander, 1988).  The overall mass balance of 
14

C recovered across all fractions varied 

between 103 ± 1.6 % and 86 ± 0.9 % of total applied radioactivity at 0 h and 12 h (Fig. 1c), 

respectively; losses due to mineralisation during the Nycodenz extraction processing time (4-6 h) 

are believed to be responsible for the decreased overall recovery seen at 12h and 24h (Fig. 1c).  

 

PSE1284-positive population dynamics and salicylic acid C capture 

The PSE1284 hybridising population, which was initially present at ~1.5% of the total FC-

detected population increased 7-fold in the 24-h following salicylic acid addition to constitute 9.3 

± 0.2 % of the total FC detected population (Fig 2a and 2b).  PSE1284-hybridized populations 

(n=4 per time point), gated as in the example in Fig. 2a, were recovered by FACS (mean number 

of cells sorted ranged from 3.7 x 10
5
 to 2.3 x 10

6
, Fig 2b) and the salicylic acid 

14
C associated 

with the sorted cells quantified by scintillation counting.  Examining the apportionment of 

salicylic acid 
14

C to PSE1284-positive cells over time (Fig. 3) as a function of the 
14

C activity 

recovered in the total Nycodenz-extracted biomass (also shown in Fig. 1b) reveals an 

incorporation of 47 ± 4.3% of the salicylic acid-associated radioactivity into the PSE1284-

positive biomass over the initial 12 hour period that corresponded to a 4-fold increase in the 

proportional population size (Fig. 2b).  In the subsequent 12 to 24-hour period, PSE1284-positive 

cells continued to increase their relative abundance (Fig 2b), but their capture of 
14

C as a 

proportion of the 
14

C initially added as salicylic acid remained relatively static whilst the 

Nycodenz-extracted biomass as a whole continued to assimilate 
14

C resulting in a decreased 
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apportionment of salicylic acid 
14

C to PSE1284-positive cells at 24 hours (33 ± 4.2% 
14

C capture 

by PSE1284 as a function of the total 
14

C assimilated).  This reduced 
14

C apportionment might 

reflect: (i) succession in the assimilation of the added substrate (the PSE1284 population 

competitively depleted initially high substrate concentrations prior to the utilisation of residual 

concentrations by a more oligotrophic population); (ii) the turnover of PSE1284-assimilated 

salicylate 
14

C and consequent cross-feeding by PSE1284-negative cells.  The competitive 

utilisation of native (potentially primed; Blagodatskaya and Kuzyakov, 2008) soil substrates 

likely explains how the PSE1284 population could continue to increase in relative abundance in 

the 12 to 24-hour period (Fig 2b) in the absence of concomitant anabolism of the added 
14

C 

source.    

 

As already established, probe PSE1284 targets both Pseudomonas and Burkholderia spp. It is 

very likely, given the vast microbial phylogenetic biodiversity known to exist in soils (Lundberg 

et al., 2012; Peiffer et al., 2013; Chen et al., 2016) that the PSE1284-targetted population 

represented a small proportion of the diversity present in the studied soil.  Against this backdrop, 

that the PSE1284-positive population was initially able to capture nearly 50% of the carbon that 

was assimilated in to the extracted biomass suggests specificity/selectivity of salicylic acid for 

the target population.  Plasmid- and chromosomally-mediated biodegradation of salicylic acid 

has long been associated with members of the genus Pseudomonas (e.g. Chakraba.Am, 1972; 

You et al., 1991; Bosch et al., 1999; Nishi et al., 2000; Sazonova et al., 2008), including 

Pseudomonas cepacia (reclassified as Burkholderia cepacia complex; Ramsay et al., 1992) and 

the C apportionment and response of the PSE1284 population to salicylic acid addition here is 

compatible with earlier reports that salicylic acid might be used as an “exotic” carbon source to 
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selectively promote the survival and activity of pseudomonad inoculants in soil (Colbert et al., 

1993a; Colbert et al., 1993c; Colbert et al., 1993b).  To understand if this selectivity arose 

because the distribution of the salicylic acid biodegradation trait was conserved within the 

bacterial groups targeted by the PSE1284 probe, or, through the competitiveness of the PSE1284 

population for this substrate against a background of other biodegradative groups, we analysed 

the taxonomic distribution of putative salicylate hydroxylase enzymes which catalyse the first 

step in the bacterial degradation of salicylic acid (Supporting Information).  This analysis 

revealed that salicylic acid biodegradation is widely dispersed among bacterial phyla (Supporting 

Fig. S1) and lower taxomonic levels (Supporting Fig. S2) that are commonly represented in 

rhizosphere soil and therefore that this trait is not taxonomically conserved.  This finding is in 

agreement with Martiny et al. (2013) who also found that the distribution of traits associated with 

the assimilation of small organic carbon sources (including p−hydroxy−phenylacetic acid, an 

aromatic acid) across a range of bacterial phyla to be highly dispersed. Therefore, on the basis of 

this analysis, it appears that success of the PSE1284 population in exploiting the applied salicylic 

acid carbon was probably not due to it being the only population in possession of the genetic 

potential to be able to do so.  Pseudomonas spp. and Burkolderia spp. are well known for their 

adaptive potential (Silby et al., 2011; Vial et al., 2011) and high competitive ability with 

strategies, in addition to relatively fast growth rates (Cray et al., 2013), that might allow 

representatives from these two bacterial genera to outcompete others for salicylic acid carbon.  

Such strategies might include production of various antibiotic compounds (Raaijmakers and 

Mazzola, 2012), production of siderophores (dos Santos et al., 2004) and siderophore piracy 

(Galet et al., 2015). 
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Evaluation of the 
14

C-FISH-FACS method  

Methods which allow the quantification of C apportionment within the microbial biomass are 

needed for improved understanding of the relationships between microbial identity, microbial C 

utilisation traits and C dynamics in soil.  Out of the many methods capable of linking 

biogeochemical processes to specific microbial taxa in the environment, only methods detecting 

C isotopic incorporation at the whole cell level (rather than biomolecule) level are suitable for 

the quantification of flows of total substrate carbon through microbial populations.   However, as 

already discussed, current methods which rely on single cell isotopic analysis (by MAR or 

NanoSIMS) are limited in the number of cells per sample that can be analysed (Clode et al., 

2009; Wang et al., 2016).  Here, through the application of FACS to sort target cells from the 

total Nycodenz-extracted cell population we have increased the target cell population that can be 

analysed from tens of cells to 10
5
 to 10

6
 cells (Fig. 2b) with modest sorting times of ~ 2 hours.  

Whilst Nycodenz gradient extraction does not likely achieve exhaustive extraction of bacterial 

cells from soil (Supporting Table S1; Gougoulias and Shaw, 2012), we know from previous 

work (Gougoulias and Shaw, 2012) that a diverse community is recovered although with some 

extraction bias.     In relation to this, a key assumption of the method as applied to apportion C 

flow through microbial communities is that any bias in extraction is constant with sampling time 

and therefore that changes in the proportional abundance of PSE1284-positive cells and in the 

substrate 
14

C they captured are representative of dynamics within the total soil bacterial 

community.   

 

There have been other published studies that have exploited FACS for the isolation and 

concentration of marine or lacustrine microbial populations for subsequent isotopic analysis.  
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However, these studies have used 
13

C (natural abundance or enriched) and therefore required a 

custom-built spooling wire microcombustion (SWiM) device coupled to a conventional IRMS 

(Eek et al., 2007; Hansman and Sessions, 2016) or NanoSIMS (Zimmermann et al., 2015) to 

detect the 
12

C/
13

C ratios in the resulting cells as regular combustion elemental analysis-coupled 

IRMS requires sample masses (10–100 µg C) which are too large to allow analysis of sorted 

cells (Hansman and Sessions, 2016).  In addition, introduction of C-containing fixatives and 

probes in to cells during FISH protocols might prove problematic in terms of C contamination 

and therefore for interpretation of sample 
12

C/
13

C ratios, especially when working at or close to 

natural abundance levels for 
13

C (Hansman and Sessions, 2016).  In comparison to the use of 
13

C, 

the analysis of 
14

C in sorted cell fractions is relatively straightforward using instrumentation (a 

scintillation counter) that is common place in research laboratories. Because scintillation 

quantifies 
14

C activity, it is not subject to the same sample mass requirements (or C 

contamination issues) and therefore allows analysis of a (fixed and hybridised) cell number (10
5
-

10
6
) that can be realistically achieved by FACS.  Here we applied 50 KBq of 

14
C-carbon to each 

experimental unit which resulted in detection of ~ 30-300 Bq 
14

C-carbon in the FACS-sorted 

population over the incubation (Fig. 3) which is ~ 60-600 times the background activity detected 

in controls not receiving 
14

C.  This sensitivity allowed detection of 
14

C incorporation and 

potential cross-feeding over short incubation timecourses (Fig. 3).  Whilst we added the test C 

substrate at a relatively high concentration (50 µg g
-1

) it would be possible to focus on 1000-fold 

lower concentrations whilst still adding the 
14

C activity required for detection by increasing the 

specific activity of the substrate applied (based on specific activities of GBq mmol
-1

 that are 

typical for 
14

C-labelled compounds as purchased).  Thus, the 
14

C-FISH-FACS method can be 

applied for study of the apportionment of substrates applied at concentrations (ng g
-1

) more 
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representative of those found in soil, for example, as a result of root exudation (Jones, 1998), or, 

indeed potentially to the study of the microbial fate of root 
14

C-exudation in situ.  Furthermore, 

the 
14

C detection in our sorted population of up to ~600 times that of background controls (with 

5 min scintillation counting time) points to the capability of the method to be applied to 

microbial groups that are not such major players in substrate utilisation as the PSE1284 

population targeted here.  In addition, whilst here we focussed on one PSE1284-positive 

population, there is the option to target and sort, through the use of FISH probes labelled with 

different chromophores, multiple bacterial groups. 

 

In terms of the potential limitations of our method, the first relates to the health and safety 

considerations of working with 
14

C and in particular the exposure of workers and environment to 

14
C-labelled bacterial aerosol particles during cell sorting.  However, our assessment (see 

Supporting Information) revealed negligible likely exposure from aerosol creation, even under a 

worst case scenario that simulated a cell sorter nozzle blockage resulting in an unstable sample 

stream.  Secondly, like all probe-based methods, 
14

C-FISH-FACS requires prior knowledge of 

the identity of the population(s) of focus and therefore, on its own, cannot be used as a discovery 

tool.  However, 
14

C-FISH-FACS might usefully be combined, in sequence, to learn more about 

the quantitative C cycling role played by hitherto unknown microbial groups that have been 

discovered by qualitative identity-function methods such as DNA or RNA-SIP.  Thirdly, in 

comparison to other in situ probe-based methods (FISH-MAR, FISH-Raman, NanoSIMS-ISH), 

the quantification of the isotopic incorporation of the sorted cell fraction in bulk precludes the 

determination of cell-specific information and therefore analysis of functional differences 

between single cells of the same population.  To overcome this, an aliquot of the sorted cells 
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might be taken for subsequent single cell analysis (for example, by MAR) to get an appreciation 

of the heterogeneity of metabolism within the microbial population of focus. 

Balancing the above-discussed advantages and limitations, we conclude that 
14

C-FISH-FACS 

makes a valuable companion to the toolbox of methods capable of quantifying the function of 

microbial cells in situ as demonstrated here in the quantification of the competitive use of 

salicylic acid by Pseudomonas and Burkholderia spp.  As the Nycodenz protocol used to obtain 

FACS-ready cell extracts is compatible with monitoring whole system fate (mineralized, 

extractable, non-extractable) of the added isotope (Fig. 1), including the 
14

C incorporated by the 

extractable non-target as well as the target cell population (Fig. 3) over time, we believe our 

method allows a quantitative dissection of C flow within the microbial biomass black box that 

has hitherto not been achieved to the same detail.   

 

Experimental Procedures 

Rhizosphere Soil 

A sandy loam soil (2% organic matter, pH 6.5; sampled from the Rowland Series of the 

University of Reading Farm, Sonning, UK, NGR SU765765) in pots (10 cm diameter containing 

270-300 g soil) was sown with L. perenne seed (Herbiseed, UK) at a density of 0.013 g seed cm
-

2
. After growth (15-20 °C) of the L. perenne seedlings for 4 weeks, the whole soil content from 

triplicate pots (defined as rhizosphere soil) was sieved (<2 mm), mixed to form a composite soil 

and used for timecourse experiments.  
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14
C-salicylic acid incubation timecourse 

Replicate gas-tight glass vials (40 ml) containing rhizosphere soil (15.7 g dry weight basis; 

moisture content 7.8 % v/w) were spiked with a solution of 
14

C-salicylic acid (2-hydroxybenzoic 

acid-phenyl-UL-
14

C) that had been derived from mixing stock solutions of ‘hot’ 
14

C-salicylic 

acid (≥98% purity, Sigma, UK; dissolved in methanol) and ‘cold’ sodium-salicylate (dissolved in 

ultra-pure water) in order to simultaneously deliver 50 µg salicylic acid per gram of soil (dry 

weight) and 50 KBq of radioactivity per vial. Controls that received only ‘cold’ salicylic acid (50 

µg g
-1

) were included.  Small test-tubes containing a solution of NaOH (2M, 2 ml) to trap 
14

C-

CO2 released as a result of mineralization were placed inside the vials on the soil surface and the 

vials were sealed and incubated at a constant temperature of 26 ± 0.2 °C, under dark conditions. 

At 0, 12 and 24 h, four replicate vials were destructively sampled for mineralization:   the test 

tubes were removed and the 
14

C in the NaOH quantified by liquid scintillation counting (LSC) 

using a Wallac 1409 DSA liquid scintillation counter (Perkin-Elmer, Boston, MA) with Ultima-

Gold (PerkinElmer) as the scintillant in a 1-to-4 (v/v) sample-to-scintillant ratio. The soil in these 

vials was then used as the basis for soil extractions as described below. In addition, for extended 

quantification of mineralization only, replicate vials receiving a lower activity of 
14

C-salicylic 

acid (0.5 KBq) were established for sampling of NaOH traps at time points beyond 24 h.  

 

Soil extraction, analysis and 
14

C mass balance 

The entire soil contents of the vials sampled at 0, 12 and 24 h from the incubation timecourse 

(above) was slurried in 14.0 ml of phosphate-buffered saline (PBS; 130 mM sodium chloride, 

10mM sodium phosphate [pH 7.3]) by vortexing for 2 min with twelve glass beads (6 mm). The 
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slurry was then subject to low-speed centrifugation (~600 × g, 5 min, ambient temperature) to 

sediment large soil particles and debris. The resulting supernatant (containing fine soil particles 

and microbial cells) was removed and retained, and the slurrying and low-speed centrifugation 

step was repeated two additional times by adding 8 ml and 7 ml PBS, sequentially, to the 

remaining soil pellet. The 
14

C-activity that remained in the soil pellet (termed Post Extraction 

Solids 
14

C (PES-
14

C)), was quantified by oxidation (four analytical replicates per sample) using a 

Perkin Elmer Model 307 combustor after freeze drying to avoid any losses of 
14

C-salicylic acid 

due to further mineralisation during drying. The slurry supernatants from the successive 

extractions were pooled and dispensed to 2 ml microcentrifuge tubes (~10 tubes per sample) and 

concentrated by high speed centrifugation (16,000 × g, 10 min, 4 
o
C). 

14
C-activity in the resulting 

supernatants (“extractable 
14

C”) was quantified by LSC as described above for the NaOH 

samples whilst the pellet (containing fine soil particles and microbial cells) was used as the basis 

for the Nycodenz purification of bacterial cells (from similar-sized soil particles) to prepare 

samples ready for FISH, flow cytometry and cell sorting as described below.  The total 
14

C-

activity recovered in each fraction (extractable 
14

C, PES-
14

C, bacterial biomass-
14

C) was 

calculated as a percentage of total applied radioactivity and summed to give the mass balance in 

each vial.  The mass balance included non-biomass associated 
14

C that was recovered during the 

Nycodenz purification, fixation, FISH and washing steps; these fractions were collected, LSC 

counted and the 
14

C activity counted as “extractable 
14

C”.    

 

 

 

This article is protected by copyright. All rights reserved.



19 
 

Nycodenz purification and fixation of bacterial cells  

The main steps of the Nycodenz protocol, as modified from Gougoulias and Shaw (2012) were 

as follows: the pellets (fine soil particles with bacterial cells) of the initial debris-cleared slurry 

supernatants were resuspended in PBS (~170 µl per microcentrifuge tube) by rigorous aspiration 

through a 200 µl pipette tip.  These resuspensions were pooled to give 2 × ~850 μl sub-samples 

which were then layered onto individual density cushions of 1000 μl of a 1.3 g/ml Nycodenz 

(Gentaur, Belgium) solution. Following centrifugation (16,000 × g, 30 min, 4 °C), the 

Nycodenz/PBS interface containing the final cell suspension (~400 μl) was removed and diluted 

twofold with 2 x PBS to provide a purified cell suspension which was harvested by further 

centrifugation (16,000 × g, 5 min, 4 
o
C). The two sub-samples were combined to form a 300 μl 

composite sample in 1 x PBS to which an equal volume of 96% (wt/vol) ethanol was added. The 

fixed samples were stored at -20°C for at least 2 h prior to hybridization and for a maximum 

period of 2 weeks. An aliquot (20 µl) of the fixed cells was stained with propidium iodide and 

counted manually under a Brunel epifluorescent microscope to determine the Nycodenz bacterial 

cell recovery (Supporting Table S1). A further aliquot (30 µl out of 600 µl) of the ethanol fixed 

cells was directly taken for LSC analysis to quantify the radioactivity associated with the total 

Nycodenz-extracted bacterial fraction.  The steps involved in the soil extraction and Nycodenz 

purification are depicted diagrammatically in the Supporting Information (Fig. S3). 

 

Fluorescence in situ hybridization (FISH) 

The following 6-carboxyfluorescein (6-FAM), labeled oligonucleotide probes (Eurofins, MWG-

Operon, Ebersberg, Germany) were used: NON-EUB338  [nonspecific for bacteria (Manz et al., 
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1992)] and PSE1284 [designed to target Pseudomonas spp. (Gunasekera et al., 2003)]. Two 

aliquots (200 µl each) of the remaining ethanol fixed cells were washed twice with 1 ml of PBS 

and resuspended in 180 μl of prewarmed (48°C) hybridization buffer (0.9 M NaCl, 20 mM Tris-

HCl, pH 7.5, 30% formamide, 0.1% sodium dodecyl sulfate) and mixed with 20 µl either of the 

specific probe PSE1284 or non-specific probe NONEUB-338 (final concentration: 5 ng µl
-1

 for 

each probe). After incubation for 4 h at 48 
o
C, the hybridization mixtures were centrifuged 

(16,000 × g, 5 min), the cell pellets resuspended in 500 µl of hybridization buffer and incubated 

at 48 
o
C for a further 20 min. The cells were then harvested by centrifugation and incubated in 

500 µl of wash buffer (20 mM Tris-HCl, pH 8.0, 0.9 mM NaCl, 0.1% sodium dodecyl sulfate) 

for 20 min. Finally, the cells were again harvested by centrifugation and resuspended in 0.2 ml of 

cold filter-sterilized (0.2 μm) PBS to await flow cytometric analysis and cell sorting.  

 

Flow cytometry and cell sorting 

Flow cytometric analysis and cell sorting were performed with an Influx™ (Becton Dickinson, 

formerly Cytopeia Inc, Seattle, USA) flow cytometer/cell sorter equipped with a 488-nm solid 

state laser (CoherentTM-Sapphire, output power 200 mW) as described previously (Gougoulias 

and Shaw, 2012). The Influx™ was also equipped with an extra forward-small size particle 

detector which allows the detection of particles >0.1 μm and was calibrated with 0.53 μm and 

3.00 μm fluorescent microbeads (Saxon Europe Ltd, Kelso, UK). The Influx™ data were 

acquired as pulse height signals for 100,000 events at a rate of 10,000 to 25,000 events per 

second with the use of the SpigotTM v.6.1.4 (BD, San Jose-California, USA) software and 

~370,000 to 2.3 million events related to the PSE-targeted population were sorted per sample and 
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LSC counted. Different replicates for each time point were analysed on different days to account 

for operational variation. During sorting the following parameters were chosen and/or calculated: 

sheath pressure - 31.7 psi using a 70 µm tip, trigger channel - paraller (small size particle 

detector), trigger level - 30; drop frequency - 67.9 kHz; piezo amplitude - 2.37-2.51 V; drop 

delay - 43.8; and, break off point (camera position on drop formation) - 223. Data analysis and 

graphics were acquired using the FlowJo software package (FlowJo 7.2.4, Tree Star Inc, 

Ashland, USA).  
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Figure Legends 

Figure 1.  (a) Cumulative mineralization of 
14

C-salicylic acid (50 µg g
-1

) added to soil sampled 

from the L. perenne rhizosphere over a 132 h timecourse. (b) Partitioning the fate of total applied 

salicylic acid 
14

C between mineralized, extractable, post extraction solids (PES) and extracted 

biomass fractions for the 0-24 hour time points. (c)  Mass balance of 
14

C recovered across all 

fractions in (b) for the 0-24 hour time points.  Data are mean ± SE (N=4).  The ‘extractable’ 

fraction in the mass balance includes 
14

C recovered by PBS extraction and in washings during 

subsequent Nycodenz cell extraction and fixation steps.   The following functional form was 

fitted (p=0.0003; R
2 
= 0.98) to the cumulative mineralization data in (a): Y = a[1 + (t/t0)

b
]
-1

 

where Y = cumulative percentage of salicylic acid 
14

C evolved as 
14

CO2 and t = time.   This 

function has an asymptote at a = 80.8 ± 5%.   

Figure 2. Flow cytometric (FC) analysis of the response of the PSE1284-6FAM-hybridising 

population to the addition of salicylic acid (50 µg g
-1

) to L. perenne rhizosphere soil.  (a) 

Indicative flow cytometric dot plots where x axis = side light scatter and y axis = green 

fluorescence per cell in the FITC channel for fixed cells extracted from soil (i,ii) 0-h, (iii) 12-h 

and (iv) 24-h after salicylic acid addition and targeted with (i) non-specific probe (NON-

EUB338-6FAM,) and (ii-iv) probe PSE1284-6FAM. Plots contain 100,000 events. The gated 

part of the plots indicates the area where the events were sorted from with the numerical value 

inside the gate depicting the percentage of the total detected events that are in the gate. Graphs 

shown are indicative of 4 replicates per time point.  (b) Mean (n =4; ± SE) response of the 

PSE1284-6FAM-hybridising population to the addition of salicylic acid over time (0 -24 h).  

Data points represent the number of PSE1284-6FAM positive cells as a proportion of the total 

number of FC detected events (i,e, 100,000 events) whilst the actual number of events sorted as 
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PSE1284-6FAM positive (the whole aliquot was sorted until the sample was exhausted) are 

shown above the data points. The correlation between the  percentage PSE1284-detected 

population by FC and the PSE1284-sorted events by FACS had an R
2
 >0.99, p <0.001). 

Figure 3. Apportionment of salicylic acid 
14

C to total Nycodenz extracted and PSE1284-sorted 

bacterial cells over time following addition of 
14

C-labelled salicylic acid (50 ug/g) to soil.  Actual 

amounts of recovered radioactivity (Bq) are shown on the right Y axis (50,000 Bq was spiked 

per sample of 15.67 g soil dw).   Data are mean ± SE.  Mean values within fraction with a letter 

in common are not significantly different (p>0.05; Fisher LSD). 
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